Cardinal characteristics associated with families of functions and permutations

Nattapon Sonpanow

RIMS Set Theory Workshop

November 20, 2020
10:30 – 11:00 (GMT+9)
Notations:

- $^B A$ is the set of all functions from B to A.
- $\text{Sym}(A)$ is the set of all permutations on A.
- $[A]^\omega = \{ X \subseteq A : |X| = \aleph_0 \}$.
Continuum Hypothesis (CH)

There is no cardinal κ such that

$$\aleph_0 < \kappa < c.$$

In other words, $\aleph_1 = c$.

It is well-known that CH is relatively independent from ZFC.

Some concepts in infinitary combinatorics lead to cardinal characteristics which lie inclusively between \aleph_1 and c. These cardinals are mostly defined on families of infinite sets of natural numbers. We study cardinal characteristics associated with families of functions and permutations on the set of natural numbers.
Continuum Hypothesis (CH)

There is no cardinal κ such that

$$\aleph_0 < \kappa < c.$$

In other words, $\aleph_1 = c$.

It is well-known that CH is relatively independent from ZFC.

Some concepts in infinitary combinatorics lead to cardinal characteristics which lie inclusively between \aleph_1 and c. These cardinals are mostly defined on families of infinite sets of natural numbers. We study cardinal characteristics associated with families of functions and permutations on the set of natural numbers.
Cardinals associated with functions and permutations

\[\aleph_1 \]

non(\(\mathcal{M}\))

\[\text{cov}(\mathcal{M}) \]

\(\aleph_1\)
The Cardinals $\text{cov}(\mathcal{M})$ and $\text{non}(\mathcal{M})$

Let \mathcal{M} be the set of meagre subsets of \mathbb{R}.

\[
\text{cov}(\mathcal{M}) = \min \left\{ |A| : A \subseteq \mathcal{M} \text{ and } \bigcup A = \mathbb{R} \right\},
\]

\[
\text{non}(\mathcal{M}) = \min \left\{ |A| : A \subseteq \mathbb{R} \text{ and } A \notin \mathcal{M} \right\}.
\]
Two sets $X, Y \in [\omega]^\omega$ are \textit{almost disjoint} if $X \cap Y$ is finite.

An infinite family $A \subseteq [\omega]^\omega$ is an \textit{almost disjoint (a.d.) family} if its members are pairwise almost disjoint. Such a family A is a \textit{maximal almost disjoint (m.a.d.) family} if it is maximal with respect to the inclusion.

$$\alpha = \min\{|A| : A \text{ is a m.a.d. family}\}.$$
The Cardinals a_e and a_p

In [12], Zhang extends the concept of almost disjoint family to families of functions and permutations on ω.

Two functions $f, g \in \omega\omega$ are almost disjoint if $f \cap g$ is finite.

\[
a_e = \min\{|A| : A \subseteq \omega\omega \text{ is a m.a.d. family of functions}\},
\]
\[
a_p = \min\{|A| : A \subseteq \text{Sym}(\omega) \text{ is a m.a.d. family of permutations}\}.
\]
Known Results

Theorem 1 (Zhang, 1999)

Each of the following statements is relatively consistent with ZFC:

- $\alpha < \alpha_e$,
- $\alpha < \alpha_p$.

Theorem 2 (Brendle, Spinas, Zhang, 2000)

- $\text{non}(\mathcal{M}) \leq \alpha_e$,
- $\text{non}(\mathcal{M}) \leq \alpha_p$.
Cardinals associated with functions and permutations

\[a_e, a_p, \text{non}(M), a, i, \text{cov}(M), p, N_1 \]
The Cardinals \mathfrak{d} and \mathfrak{b}

For any two functions $f, g \in \omega \omega$, we say that g dominates f if

$$f(n) \leq g(n) \text{ for all but finitely many } n \in \omega.$$

A family $D \subseteq \omega \omega$ is a dominating family if each function in $\omega \omega$ is dominated by some member of D.

$$\mathfrak{d} = \min\{|D| : D \subseteq \omega \omega \text{ is a dominating family}\}.$$

A family $B \subseteq \omega \omega$ is an unbounded family if there is no function in $\omega \omega$ which dominates every member of B.

$$\mathfrak{b} = \min\{|B| : B \subseteq \omega \omega \text{ is an unbounded family}\}.$$
New Cardinals \mathfrak{d}_p and \mathfrak{b}_p

\[\mathfrak{d}_p = \min\{|D| : D \subseteq \text{Sym}(\omega) \text{ is a dominating family}\}, \]
\[\mathfrak{b}_p = \min\{|B| : B \subseteq \text{Sym}(\omega) \text{ is an unbounded family}\}. \]

Theorem 3

- $\mathfrak{d}_p = c$,
- $\mathfrak{b}_p = 2$.
The Cardinals s and r

For any two sets $A, B \in [\omega]^{\omega}$, we say that A splits B if

$$B \cap A \text{ and } B \setminus A \text{ are infinite.}$$

A family $S \subseteq [\omega]^{\omega}$ is a splitting family if each member of $[\omega]^{\omega}$ is split by some member of S.

$$s = \min\{|S| : S \subseteq [\omega]^{\omega} \text{ is a splitting family}\}.$$

A family $R \subseteq [\omega]^{\omega}$ is a reaping family if there is no set in $[\omega]^{\omega}$ which splits every member of R.

$$r = \min\{|R| : R \subseteq [\omega]^{\omega} \text{ is a reaping family}\}.$$
New Cardinals s_f, r_f, s_p, and r_p

\[
s_f = \min\{|S| : S \subseteq \omega \omega \text{ is a splitting family}\},
\]
\[
r_f = \min\{|R| : R \subseteq \omega \omega \text{ is a reaping family}\},
\]
\[
s_p = \min\{|S| : S \subseteq \text{Sym}(\omega) \text{ is a splitting family}\},
\]
\[
r_p = \min\{|R| : R \subseteq \text{Sym}(\omega) \text{ is a reaping family}\}.
\]

Fact. $s \leq \text{non}(\mathcal{M})$ and $\text{cov}(\mathcal{M}) \leq r$.

Theorem 4 (S.)

- $s_f = \text{non}(\mathcal{M}) = s_p$,
- $r_f = \text{cov}(\mathcal{M}) \leq r_p$.
\[s_f = \text{non}(\mathcal{M}) \text{ and } r_f = \text{cov}(\mathcal{M}) \]

Proof. Use the fact that
\[
\text{cov}(\mathcal{M}) = \min\{|C| : C \subseteq \omega \land \neg \exists f \in \omega \forall g \in C \ [f \cap g \text{ is infinite}]\}, \text{ and }
\text{non}(\mathcal{M}) = \min\{|C| : C \subseteq \omega \land \forall f \in \omega \exists g \in C \ [f \cap g \text{ is infinite}]\}.
\]

\[\text{cov}(\mathcal{M}) \leq r_p \]

Proof. Use the fact that \(\text{cov}(\mathcal{M}) = m_{ctbl} \) and consider the poset \(\text{Fn}_{1-1}(\omega, \omega) \).

\[\text{non}(\mathcal{M}) = s_p \]

Proof. Consider \(\text{Sym}(\omega) \) as a Polish space.
Try to connect a set of functions and a set of permutations.
The Cardinal \(i \)

An infinite family \(\mathcal{I} \subseteq [\omega]^\omega \) is an \textit{independent family} if, for any two finite disjoint sets \(A, B \subseteq \mathcal{I} \), \(\bigcap A \setminus \bigcup B \) is infinite (here \(\bigcap \emptyset = \omega \)).

Such a family \(\mathcal{I} \) is a \textit{maximal independent family} if it is maximal with respect to the inclusion.

\[
i = \min\{|\mathcal{I}| : \mathcal{I} \subseteq [\omega]^\omega \text{ is a maximal independent family}\}.
\]
New Cardinals i_f and i_p

\[i_f = \min\{|I| : I \subseteq \omega \omega \text{ is a maximal independent family}\}, \]

\[i_p = \min\{|I| : I \subseteq \text{Sym}(\omega) \text{ is a maximal independent family}\}. \]

Theorem 5 (S. and Vejjajiva, 2020)

- $\text{cov}(\mathcal{M}) \leq d \leq i_f \leq i$,
- $\text{cov}(\mathcal{M}) \leq i_p \leq i$.

Note that, for a_e and a_p,

- $\text{ZFC} \not\models a_e \leq a$,
- $\text{ZFC} \not\models a_p \leq a$.

Nattapon Sonpanow
Cardinals associated with functions and permutations
\[\text{cov}(\mathcal{M}) \leq i_f, i_p \]

Proof. Use the fact that \(\text{cov}(\mathcal{M}) = m_{ctbl} \) and consider the posets \(\text{Fn}(\omega, \omega) \) and \(\text{Fn}_{1-1}(\omega, \omega) \).

\[i_f, i_p \leq i \]

Proof. Given an independent family \(I \subseteq [\omega]^\omega \) with \(\aleph_0 \leq |I| < i_f \). Convert \(I \) to an independent family of functions \(C \subseteq \omega \omega \) with the same size as \(I \). We get a witness \(h \) for the nonmaximality of \(C \), and then convert \(h \) to a set \(H \) which is a witness for the nonmaximality of \(I \). Similarly for \(i_p \).
Proof. Given an independent family $\mathcal{I} \subseteq \omega\omega$ such that $\aleph_1 \leq |\mathcal{I}| < d$.

Take a model M of (a large fragment of) ZFC with $|M| = |\mathcal{I}|$ and $\mathcal{I} \in M$.

Construct a sequence $\{n_k : k < \omega\} \subseteq \omega$ with $n_0 = 0$ so that for any $g \in M \cap \omega\omega$ there are infinitely many k such that $g(n_k) < n_{k+1}$.

(This part uses the assumption $|M| < d$.)

Let $\{f_k : k < \omega\} \subseteq \mathcal{I}$ be a sequence in M without repetitions. Define

$$h = \bigcup_{k<\omega} f_k \upharpoonright [n_k, n_{k+1}).$$

Then h is a witness for the nonmaximality of \mathcal{I}.

(This part uses the assumption that the sequence of f_k’s lies in M.)
\[d \leq i_f \]

Proof. Given an independent family \(\mathcal{I} \subseteq \omega \omega \) such that \(\aleph_1 \leq |\mathcal{I}| < d \).

Take a model \(M \) of (a large fragment of) ZFC with \(|M| = |\mathcal{I}| \) and \(\mathcal{I} \in M \).

Construct a sequence \(\{ n_k : k < \omega \} \subseteq \omega \) with \(n_0 = 0 \) so that for any \(g \in M \cap \omega \omega \) there are infinitely many \(k \) such that \(g(n_k) < n_{k+1} \).

(This part uses the assumption \(|M| < d \).)

Let \(\{ f_k : k < \omega \} \subseteq \mathcal{I} \) be a sequence in \(M \) without repetitions. Define

\[h = \bigcup_{k<\omega} f_k \restriction [n_k, n_{k+1}). \]

Then \(h \) is a witness for the nonmaximality of \(\mathcal{I} \).

(This part uses the assumption that the sequence of \(f_k \)'s lies in \(M \).)
Proof. Given an independent family $\mathcal{I} \subseteq \omega \omega$ such that $\aleph_1 \leq |\mathcal{I}| < d$.

Take a model M of (a large fragment of) ZFC with $|M| = |\mathcal{I}|$ and $\mathcal{I} \in M$. Construct a sequence $\{n_k : k < \omega\} \subseteq \omega$ with $n_0 = 0$ so that for any $g \in M \cap \omega \omega$ there are infinitely many k such that $g(n_k) < n_{k+1}$.

(This part uses the assumption $|M| < d$.)

Let $\{f_k : k < \omega\} \subseteq \mathcal{I}$ be a sequence in M without repetitions. Define

$$h = \bigcup_{k<\omega} f_k \upharpoonright [n_k, n_{k+1}).$$

Then h is a witness for the nonmaximality of \mathcal{I}.

(This part uses the assumption that the sequence of f_k’s lies in M.)
\[s_f = \text{non}(\mathcal{M}) = s_p \]
\[\text{cov}(\mathcal{M}) = r_f \]
\[\aleph_1 \]
Open Problems

1. Is $r_p = \text{cov}(\mathcal{M})$?

2. Does $\mathfrak{d} \leq i_p$ hold?

3. Is each of the following statements consistent with ZFC?
 - $\text{cov}(\mathcal{M}) < i_p$
 - $i_f < i$
 - $i_p < i$

4. Are any strict inequalities between i_f and i_p consistent with ZFC? (Any possible strict inequalities between a_e and a_p is still unknown.)
References

THANK YOU