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I. Highly connected
partition relations



Classical partition relations

Recall the Hungarian notation for partition relations: If λ, µ, and

ν are cardinals and k is a natural number, then

ν → (µ)kλ

is the assertion that, for every function c : [ν]k → λ, there is

H ⊆ ν of size µ such that c � [H]k is constant.

• The infinite Ramsey theorem states that, for all k ,m < ω,

ℵ0 → (ℵ0)km.

• An uncountable cardinal κ is weakly compact if and only if

κ→ (κ)22.
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Counterexamples at c

There are two simple, very strong counterexamples to natural

generalizations of Ramsey’s theorem to c.

• Define ∆ : [ω2]2 → ω by letting ∆(f , g) be the least j such

that f (j) 6= g(j). Then ∆ witnesses

c 6→ (3)2ℵ0 .

• Define d : [R]2 → 2 as follows. Fix a well-ordering ≺ on R
and let d(x , y) = 0 if ≺ agrees with the usual ordering of R
on the order of x and y , and d(x , y) = 1 otherwise. Then d

witnesses

c 6→ (ℵ1)22.
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Connectedness

The relation ν → (µ)2λ can be phrased in graph-theoretic

language: Whenever the edges of the complete graph on ν-many

vertices are colored with λ-many colors, we can find a complete

monochromatic subgraph of size µ.

In search of nontrivial

partition relations that can hold at small uncountable cardinals,

one might try to slightly weaken the requirement that the

monochromatic subgraph we obtain is complete. One natural way

to approach this is via considerations of connectedness.

Definition

Let G = (V, E) be a graph.

1 G is connected if, for all u, v ∈ V, there are u0, u1, . . . , un ∈ V
such that u0 = u, un = v , and, for all i < n, {ui , ui+1} ∈ E .

2 G is κ-connected if it is connected and remains connected

after removing any fewer than κ-many vertices.
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Highly connectedness
Definition (Bergfalk-Hrušák-Shelah ‘20)

1 A graph G is highly connected if it is |G|-connected.

2 The partition relation

ν →hc (µ)2λ

is the assertion that, for every c : [ν]2 → λ, there are H ⊆ ν
of size µ and a highly connected graph (H,E ) such that

c � E is constant.

Note: A finite graph is highly connected if and only if it is

complete, so the relation

ν →hc (µ)2λ

can be seen as a genuine generalization of the classical finite

Ramsey partition relations.
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1 A graph G is highly connected if it is |G|-connected.

2 The partition relation

ν →hc (µ)2λ

is the assertion that, for every c : [ν]2 → λ, there are H ⊆ ν
of size µ and a highly connected graph (H,E ) such that

c � E is constant.

Note: A finite graph is highly connected if and only if it is

complete, so the relation

ν →hc (µ)2λ

can be seen as a genuine generalization of the classical finite

Ramsey partition relations.



Highly connectedness
Definition (Bergfalk-Hrušák-Shelah ‘20)
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Warm-up Exercise

Proposition (Bergfalk-Hrušák-Shelah ‘20)

If ν is an infinite cardinal and k is a natural number, then

ν →hc (ν)2k .

Proof:

A similar proof yields the following:

Proposition

If κ is strongly compact, λ < κ, and cf(ν) ≥ κ, then ν →hc (ν)2λ.

Some immediate negative results in ZFC: for all infinite λ,

• for all µ ≥ 3, λ+ 6→hc (µ)2λ;

• 2λ 6→hc (2λ)2λ.
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Consistent positive results

Theorem (Bergfalk-Hrušák-Shelah ‘20)

If the existence of a weakly compact cardinal is consistent, then it

is consistent that

2ω1 →hc (2ω1)2ω.

Theorem (Hrušák-Shelah ‘2X)

If the existence of a measurable cardinal is consistent, then it is

consistent that

ω2 →hc (ω2)
2
ω.
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Motivating questions

1 What effect do other well-known

compactness/incompactness principles (e.g. PFA, square

principles) have on highly connected partition relations?

2 Are any nontrivial positive consistency results possible at the

level of c?
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Square bracket relations

To state our results, we need a variation on our highly connected

partition relations.

Definition

The partition ν →hc [µ]2λ,κ (resp. ν → [µ]2λ,<κ) is the assertion

that, for every coloring c : [ν]2 → λ, there is H ⊆ ν of size µ and

a highly connected graph (H,E ) such that |c“E | ≤ κ (resp.

|c“E | < κ).
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Squares

Definition (Todorcevic)

Suppose that ν is a regular uncountable cardinal. Then �(ν) is

the assertion that there is a sequence ~C = 〈Cα | α < ν〉 such

that, for all limit ordinals β < ν:

1 Cβ is a club in β;

2 (Coherence) for all α ∈ Lim(Cβ), we have Cα = Cβ ∩ α;

3 (Nontriviality) there is no club D in ν such that, for all

α ∈ Lim(D), we have Cα = D ∩ α.

�(ν)-sequences are canonical examples of set theoretic

incompactness.

Theorem (Jensen)

If ν is a regular uncountable cardinal and �(ν) fails, then ν is

weakly compact in L.
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Negative results from square

Theorem (LH ‘20)

Suppose that λ < ν are infinite regular cardinals and �(ν) holds.

Then

ν 6→hc [ν]2λ,<λ.

(We in fact get the failure of the weaker principle ν →wc [ν]2λ,<λ.)

Theorem (LH ‘20)

If µ is a singular cardinal and �µ holds, then

µ+ 6→hc [µ]2cf(µ),<cf(µ).
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Subadditive unbounded functions

The proofs of these results can be factored through the notion of

subadditive unbounded functions. For example:

Step 1: Prove that �(ν) entails the existence of a function

c : [ν]2 → λ such that

• (Subadditive) for all α < β < γ < ν, we have
• c(α, γ) ≤ max{c(α, β), c(β, γ)}; and
• c(α, β) ≤ max{c(α, γ), c(β, γ)}.

• (Unbounded) for every unbounded H ⊆ ν and every i < λ,

there are α < β in H such that c(α, β) > i .

Step 2: Prove that a subadditive unbounded function

c : [ν]2 → λ witnesses the failure of ν →hc [ν]2λ,<λ.
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A positive result at c



The consistency result

Theorem (LH ‘20)

Suppose that ν is a weakly compact cardinal and P is the poset

to add ν-many Cohen reals. Then, in V P, for all λ < ν we have

c→hc [c]2λ,2

This is sharp, since we know that

• c 6→hc (c)2ω;

• c 6→ [ℵ0]2ℵ0,<ℵ0

Corollary (LH ‘20)

The following are equiconsistent over ZFC:

1 There exists a weakly compact cardinal.

2 c→hc [c]2λ,2.
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Higher dimensions

What about statements of the form ν →hc (µ)kλ for k > 2?

We

would need to isolate the/a correct definition(s) of “highly

connected k-uniform hypergraph”. One approach is via the

existence of paths between vertices; even here, there are different,

non-equivalent definitions. Using any of these path-based

definitions, we can prove, for any k > 2:

Theorem (LH ‘20)

1 After adding a weakly compact number of Cohen reals, for

all λ < c, we have c→hc [c]kλ,k .

2 In ZFC, we have c 6→hc [c]kλ,k−1.
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Remaining speculations

But there are other definitions of connectedness of k-uniform

hypergraphs that arise from more homological considerations, and

things seem less clear if these definitions are used.

Also, to construct consistent counterexamples, we would want to

develop the theory of “subadditive unbounded functions”

f : [ν]k → λ.
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